
Manuscript 3377 

Classification Manner Utilizing Electroencephalography Signals to Classification Manner Utilizing Electroencephalography Signals to 
Investigate Waveforms Investigate Waveforms 

Wessam Al-Salman 

Ali Basim Al-Khafaji 

Mishall Al-Zubaidie 

Follow this and additional works at: https://kijoms.uokerbala.edu.iq/home 

 Part of the Biology Commons, Chemistry Commons, Computer Sciences Commons, and the Physics Commons 

https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home/
https://kijoms.uokerbala.edu.iq/home?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol10%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol10%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol10%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol10%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=kijoms.uokerbala.edu.iq%2Fhome%2Fvol10%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uokerbala.edu.iq/en/
https://uokerbala.edu.iq/en/


Classification Manner Utilizing Electroencephalography Signals to Investigate Classification Manner Utilizing Electroencephalography Signals to Investigate 
Waveforms Waveforms 

Abstract Abstract 
Waveform detection has been an area of continuous investigation for many years. One important 
waveform in sleep stage 2 is the k-complex. Numerous researchers have created various strategies for 
auto-k-complex detection; some of these strategies state that the automated detection techniques are 
adequate. Because of its analytically relevant resolution, the Electroencephalogram (EEG) is a commonly 
utilized technique to analyze the k-complexes in order to understand the nervous system activity of the 
brain. Several researchers have classified waveforms using EEGs in a variety of ways. It appears that the 
majority of the waveform detection had limitations. The necessary analyzes took a lot of time to 
complete, no execution time was indicated in any of the earlier research, and they were too complex for 
real-world use. Furthermore, it was revealed that numerous experiments were done without window size 
and were utilized to detect waveform characteristics. Additionally, the research used one or two 
evaluation instruments to analyze the performance outcomes. For the dataset, a maximum accuracy of 
94% to 75% was reported. Because of its significance, several analysts have developed an automated 
technique to use EEG data to study k-complexes. This work proposes a novel approach to feature 
detection for k-complexes utilizing a least square support vector machine (LS-SVM) classifier. The sliding 
window method divides EEG signals into a number of segments. Subsequently, distinct feature sets are 
obtained from every time interval. Every EEG segment was visible in the obtained twenty-seven features 
as vectors. That means, twenty-seven features were extracted using the Katz algorithm and the Tunable 
Q-factor wavelet transform for each segment. These features were analyzed, to select the most important 
features, using an Analysis of Variance (ANOVA) and the F-test. Finally, the vector of features was used as 
input to the LS-SVM classifier. When it came to identifying events of (non) k-complexes, the suggested 
novel technique demonstrated noteworthy performance results with sensitivity, accuracy, and specificity 
of 98.3%, 96.5%, and 91.6%, respectively. This high accuracy rate has not been discovered in any method 
yet. When compared to other classifiers and methods in this field of research, the LS-SVM classifier 
approach yielded the best results. 
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Abstract

Waveform detection has been an area of continuous investigation for many years. One important waveform in sleep
stage 2 is the k-complex. Numerous researchers have created various strategies for auto-k-complex detection; some of
these strategies state that the automated detection techniques are adequate. Because of its analytically relevant resolu-
tion, the Electroencephalogram (EEG) is a commonly utilized technique to analyze the k-complexes in order to under-
stand the nervous system activity of the brain. Several researchers have classified waveforms using EEGs in a variety of
ways. It appears that the majority of the waveform detection had limitations. The necessary analyzes took a lot of time to
complete, no execution time was indicated in any of the earlier research, and they were too complex for real-world use.
Furthermore, it was revealed that numerous experiments were done without window size and were utilized to detect
waveform characteristics. Additionally, the research used one or two evaluation instruments to analyze the performance
outcomes. For the dataset, a maximum accuracy of 94%e75% was reported. Because of its significance, several analysts
have developed an automated technique to use EEG data to study k-complexes. This work proposes a novel approach to
feature detection for k-complexes utilizing a least square support vector machine (LS-SVM) classifier. The sliding
window method divides EEG signals into a number of segments. Subsequently, distinct feature sets are obtained from
every time interval. Every EEG segment was visible in the obtained twenty-seven features as vectors. That means,
twenty-seven features were extracted using the Katz algorithm and the Tunable Q-factor wavelet transform for each
segment. These features were analyzed, to select the most important features, using an Analysis of Variance (ANOVA)
and the F-test. Finally, the vector of features was used as input to the LS-SVM classifier. When it came to identifying
events of (non) k-complexes, the suggested novel technique demonstrated noteworthy performance results with sensi-
tivity, accuracy, and specificity of 98.3%, 96.5%, and 91.6%, respectively. This high accuracy rate has not been discovered
in any method yet. When compared to other classifiers and methods in this field of research, the LS-SVM classifier
approach yielded the best results.
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1. Introduction

T he brain's ability to heal and restore people's
physical and mental health is thought to

depend on the stage of sleep. This aids in the body's
ability to heal itself and boosts the immune system.
When people's jobs and personal lives are impacted
by how they sleep, it serves an important purpose in
life [1]. Brain disarray can cause long-lasting issues

that can harm people's ability to function physically
and mentally. 50e70 m people were discovered to
suffer from sleep disorders in 2003, including
chronic sleeplessness and sleep apnoea, according
to the US Health Organization [2,3]. A sleep
specialist would typically stage sleep visually
throughout the night using the Rechtschaffen &
Kales function or the American Academy of Sleep
Medicine (AASM) features [4e6]. The examination
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of the sleep state is tiring, error-prone, and expen-
sive. The stages of sleep were distinguished as rapid
eye movement (REM) and non-rapid eye movement
(NREM) [7e10]. S1-Stage 1, S2-Stage 2, S3-Stage 3,
S4-Stage 4 make up NREM [11,12]. According to
numerous studies, the EEG signals show distinct
characteristics and waveforms at each stage of sleep
that show whether a person is awake or asleep right
now [7]. These sleep stages' waveforms often depict
any alterations to the muscles and any movement of
the brain's neurons [3,4]. Fig. 1 provides an illus-
tration of the characteristics of these sleep wave
levels. The existence of k-complexes in S2 in signals
from electroencephalograms is a crucial feature. The
waves are described as a prominent series of sharp
negative waves followed by strong positive waves.
The k-complexes are reported to last between 0.5
and 1.5 s (s), with a maximal amplitude of over 75 mV

[13,14]. According to other studies, the minimum
value of [15e17] is 100 mV, and the maximum and
minimum k-complex durations are 1 s and 3 s,
respectively.
The gold standard for k-complexes identification

is generally thought to be sleep expert visually
graded methods. Although visual recording for k-
complexes was once thought to be the conventional
approach, it has a number of drawbacks and re-
strictions. A specific one is biased, challenging,
tiring, expensive, and inaccurate. Nevertheless,
since conclusions reached by the two sleep experts
may differ, even while recording the same sleep,
visually determining the morphology of the re-
cordings of k-complexes in EEG can be potentially
erroneous and untrustworthy [15]. As a result,
increasing numbers of researchers are concen-
trating on creating a spontaneous k-complex finding

Fig. 1. Wave features through different sleep stages in signals of EEG.
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approach to fasten treatment and lessen the neu-
rologist's workload. Additionally, a trustworthy
approach to figuring out k-S2 complexes would save
time and provide an unbiased assessment of the
sleep stage. In this field of study, many domains of
time-frequency or time-domain, signal-based, sin-
gle-channel, multichannel physiological, and mul-
tiple approaches have been presented to identify
automatic sleep k-complexes.
The key contributions and novelty of the proposed

approach are given below:

� The principal contribution of this work is the
development of a novel waveform detection al-
gorithm based on fractal dimension and the
Tunable Q-Factor Wavelet Transform (TQWT) to
extract significant features from EEG signals
used to identify the key elements of sleep stage 2
from EEG data. This method is used as a plat-
form to help physicians and neurologists identify
sleep problems automatically using EEG records.
Experts find it useful to make clinical judgments
as well. It was created using a distinct set of
features and combined with the LS-SVM classi-
fier. The FD method combines the signals, and it
is used to extract association characteristics from
EEG data without any prior information. Single
channel signals are the focus of our method's
performance analysis. This is just another crucial
component of our approach. The implemented
method offers significant accuracy for waveform
recognition, reporting a correct detection average
of 98.3%. Thus, our approach contributes to the
improvement of the systematic approach to
automatically score sleep phases, helping physi-
cians and neurologists identify and treat sleep
problems. Moreover, our method's primary
advantage relates to the feature extraction pro-
cess. With this approach, a vast amount of EEG
data may be minimized into small datasets by
selecting the most representative data across all
dataset segments while accounting for observa-
tion variability. This study may operate with
large amounts of data while requiring little re-
sources and computations due to data reduction.

� Using a common dataset, the effectiveness of our
model was tested, and when compared to other
models, the database yielded the best and most
accurate findings. The performance of detection
is greatly developed for all waveforms investi-
gation using various sets of characteristics.

� The suggested technique is fast since it relies on
selection characteristics based on ANOVA and
F-tests, which need minimum computation time.
Our suggested method used EEG data to

characterize signals that are characteristic for the
identification of waveforms in sleep stages and
sleep-related works.

� This study uses a publicly available EEG data-
base so that our findings may be expanded
upon, examined, and contrasted with those of
other researchers.

� We have achieved high classification accuracy in
6-fold cross-validation using our approach,
which is also applicable in one offline database.
In comparison to other techniques, this is the
best categorization accuracy yet documented in
this discipline.

� The performance of our technique was evalu-
ated using a variety of classification measuring
instruments, such as F-score, cross-validation,
ROC curve, specificity, accuracy, sensitivity, and
kappa coefficient. These evaluation tools double-
checked the viability of techniques to identify
sleep waveform characteristics in EEG re-
cordings. Thus, EOGs, ECGs, and bio-signals of
epileptic seizures may all be tested and classified
using our technique.

� In conclusion, an effective approach for extract-
ing features from the entire EEG database was
presented, utilizing Katz's algorithm and the Q-
Factor Wavelet Transform to identify waveforms
that enhance both system and classification
performance.

The study roadmap is described in this article: In
Section 1, a thorough introduction is given. Works
related to this topic are included in Section 2.
We provide a description of experimental data in
Section 3. Section 4 outlines our proposed method
process. Section 5 studies feature extraction and
signal data. Section 6 investigates statistical analysis
for our proposed method. Classification algorithms
are illustrated in Section 7. Section 8 presents
experimental findings with details on the discussion
of results and comparisons. The limitations of the
proposed solution are included in Section 9. Finally,
the study's findings and projected trends are pre-
sented in Section 10.

2. Related work

Some methods are used to discover signals of EEG
k-complexes. Al-Hadeethi et al. [18], for instance,
used a matching approach to filter data in order to
determine the morphology of the k-complexes in
raw EEG data. An adjustable Q-factor wavelet
transform (TQWT) was proposed by Lajnef et al. [19]
to study k-complexes. Bankman et al. [16] focused
on using an informal neural network classifier
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having 14 features to discover the characteristics of
S2 if EEG sleep signal. The average of the sensitivity
results obtained was 90%. A neural network was
also applied by Jansen and Desai [13] to discover k-
complex and non-k-complex fragments from EEG
signals. Many researchers investigated k-complexes
in EEG sleep by applying various methods such as
an artificial neural network [13,16], and nonlinear
characteristics concerning fractal dimensions, Fuzzy
thresholds [1], and pattern-matched wavelet
methods [20], time-frequency and deep neural [21],
multitaper method [22], and deep learning [23],
clustering method and a classifier of neural network
[24]. Stranded in 68%e92% of cases, the accuracy of
finding k-complexes is medium. Therefore, the
largest hurdle in k-complexes detection is now
effectively classifying imbalanced data. The sug-
gested model also has a promising performance
when handling severely unbalanced data. Medical
practitioners such as neurologists may find it helpful
in the identification and management of sleep dis-
orders. To circumvent this limitation, the purpose of
this work is to suggest new methods for the inves-
tigation of EEG k-complex signaling.
In this work, an effort is made to create an effective

technique for recognizing EEG signals that have k-
complexes of different features coupled using an LS-
SVM. In this study, the window size was used to
divide every signal to some number of epochs

utilizing the method of sliding windows. Then, other
groups of characteristics, including frequency, fractal,
and statistical time aspects, were extracted from every
segment. To display the k-complexes sections and
those non-k-complexes, the classifier of LS-SVM was
fed all the excerpted features after analysis. To eval-
uate the effectiveness of the suggested strategy, the
LS-SVM's results were compared to those of other
various classifiers. Then, it was compared to earlier
research. Our results demonstrated that specific
feature sets might classify the k-complexes.

3. Experimental data description

The EEG dream database is used by the re-
searchers as a baseline for EEG data sets when
doing the studies. Researchers can access the data
set and other information for free at http://www.tcts.
fpms.ac.be/devuyst/Database/DatabaseSpindles [9].
The effectiveness of our approach was assessed
using the Sleep-EDF database. Additionally, this
data set was collected from the Dream database that
MONS University made available to the TCTS lab. It
is also accessible through Bruxelles University [1]
from the sleep laboratory at de-Charleroi. Four men
and six women were EEG signal recorders. They
were between the ages of 20 and 47 (see Fig. 2):
30-min EEG signals from the EEG central channel
were recorded, these signals are (C3- A1) or (Cz-

Subjects 

Name Age Gender Sampling 
frequency 

Time of extract signal Channel No. of k-
complexes 

Excerpt 1 

Excerpt 2 

Excerpt 3 

Excerpt 4 

Excerpt 5 

Excerpt 6 

Excerpt 7 

Excerpt 8 

Excerpt 9 

Excerpt 9 

20 

23 

47 

24 

23 

23 

27 

46 

27 

21 

Man 

Woman 

Woman 

Woman 

Woman 

Man 

Man 

Woman 

Man 

Woman 

200Hz 

02:00:00 to 02:30:00 
05:00:30 to 05:30:30 

06:06:00 to 06:36:00 

01:16:00 to 01:46:00 

07:15:00 to 07:45:00 

00:10:00 to 00:40:00 

02:20:00 to 02:50:00 

04:50:00 to 05:20:00 

05:30:00 to 06:00:00 

02:30:00 to 03:00:00 

CZ-A1 

34 

45 

12 

78 

39 

28 

11 

4 

5 

16 

Fig. 2. Details of k-complexes database.
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A1). Signals are sampled at a rate of 200 Hz. Every
EEG recording comprises one EMG submental
channel in addition to 3 channels of EEG: channel 1
is C3- A1 or channel CZ- A1, channel 2 is O1- A1,
and channel 3 is FP1- A1. Two sleep specialists
visually identified the EEG data collected through
the study of signals of EEG.
1st sleep expert took 10 recordings, 2nd sleep

expert rated the 5e10 dataset. A duration of 1 s was
constantly k-complexes providing. This paper uses
the 1st 10 recordings because they provide a more
accurate measurement of the duration. Fig. 3 dis-
plays an illustration of a stage two sleep EEG with k-
complexes and without them.

4. Proposed method

In this effort, a useful technique to recognize EEG
signal k-complexes was provided. As seen in Fig. 4,
every EEG signal in part 1 was divided into
manageable parts using the sliding window tech-
nique. Li et al. [25] divided the epileptic EEG data
using this method. In their research, Zaidi, and

Farooq [3] used the method of sliding windows to
identify the features of S2 in EEG signals. Ashok-
kumar et al. [26] utilized the sliding window method
in order to assess the anesthesia degree in the EEG.
Zaidi, and Farooq [3] looked at several sizes of
sliding windows to identify and discover any sleep
spindles in the EEG signals. According to the out-
comes of the simulation, the sliding window size in
this study was experimentally determined through
training phases. After thorough testing, the size of
the window was managed at 0.5 s and 0.4 s of
overlap. Various sections of characteristics have
been retrieved by applying a dimension fraction
technique and transformation of wavelet with a
tunable Q-factor in Section 2, which is the features
extraction stage. A crucial step to developing the
functionality and reducing algorithm complexity is
to lower the feature dimensionality.
The fundamental merits were then employed to

characterize k-complexes by applying the SVM after
the retrieved features had been assessed using
computational hypothesis testing to show each
segment of EEG for 0.5 s. We sent the retrieved k
means features, Bayes who is a nerves network
classifier tests the functioning of our suggested
technique. These classifiers were chosen because of
their effectiveness. We performed a 6-cross com-
parison and validation of various approaches in this
area of study in order to manage additional evalu-
ation. The outcomes showed that our suggested
method is capable of bringing out various aspects of
EEG signals. Additionally, it has the ability to
identify the essential components of S2, such as the
high accuracy level of k-complexes. These findings
support the sleeping issue diagnosis by neurologists
and sleep specialists. The three steps of our
method's structure are shown in Fig. 5.

4.1. Features extraction

The feature extraction technique aims to minimize
the large volume dimensionality of the signal data.
This needs to be done without leaving out any
important details. For instance, feature extraction is
regarded as a crucial step to achieve crucial findings
in the classification stage. Applying the fractal and
tunable Q-Factor Wavelet Transform, various char-
acteristics set “Twenty-three” are extracted from
every 0.5 segments of EEG in this study. In some
studies, waveforms such as a k-complex are defined
as temporary transient waveforms that are observed
by a negative sharp wave followed by a positive
sharp wave with a duration between 0.5 s and 1.5 s.
Some studies have reported that the maximum time
duration of this waveform is between 1 s and 3 s

Fig. 3. Example of EEG signals of k-complexes.

Fig. 4. Example of EEG waves being divided into 0.5-second-long pieces
using the sliding window technique.
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(Bankman et al., 1992; Cash et al., 2009; Devuyst
et al., 2010; Jansen & Desai 1994). In addition, to
detect all waveforms in sleep stage 2, different
window sizes of 0.5 s, 1 s, 1.5 s, and 2 s were tested.
During the training phase, our findings show that
the 0.5 s achieved higher results compared with
others.
Prior to feeding the retrieved features into the

classifier, we evaluated the statistical hypothesis to
evaluate the features statistically. A statistical hy-
pothesis test is primarily used to identify and
differentiate the potential of selected traits and to
indicate whether or not these statistically differen-
tiate the potential. Al-Kabir et al.'s [27] previously
published work from 2023 states that selecting the
best characteristics is important for the EEG classi-
fication challenge. The results show that selecting
characteristics accurately enhances the classification
performance. Statistical hypothesis testing is hence
a popular method for selecting characteristics. One-
way analysis variance (ANOVA) was utilized in this
work to assess the statistical significance of the
features distinguishing potential and to ascertain if
feature values in different classes varied substan-
tially. It is usually used to compare the characteris-
tics of different populations.

FD¼
Log10

�
L
a

�

Log10
�

L
a

�
þ Log10

�
d
L

� ð1Þ

ANOVA scores the “f-test” variance between
classes and variance within the class when exam-
ining features. The degree of class division is dis-
played by the “f-ratio.” Musthafa et al. (2024) [28]
have provided further information on ANOVA.
Every experimental test was carried out using the

statistics toolbox in Matlab. Consequently, if
p < 0.05, a difference is considered statistically sig-
nificant, because of this, features with p-values
larger than 0.05 are deemed to be non-significant
and are removed from the feature matrices.

4.1.1. Fractal dimension
By using Katz's approach to calculate the dimen-

sion fraction of each EEG segment, fractal dimen-
sion characteristics (FD) were recovered. It is used to
calculate the ratio between the maximum distance
d and the curve length L. This is done at every po-
sition along the curve, from start to finish. L is
derived by adding together all of the Euclidean
distance between subsequent places. This is how the
signals' fractal dimension is calculated:

Where

� a refers to the uniform distance between all
following places.

� L means the total length curve or the total of the
Euclidean distance between two consecutive
points.

� d stands for the diameter of curves.
� L and d are illustrated by:

L¼
Xn

j¼1

��
xjþ1 � x

�2 þ �
yjþ1 � y

�2
	1=2

ð2Þ

d¼max
���

xjþ1�x
�2þ�

yjþ1�y
�2
	1=2�

; j¼1;2;3…;n

ð3Þ
In this work, the FDs for each epoch were calcu-

lated using Katz's technique. The value of the FDs is
predicted to be a 1.0 to 2.0 fraction.

Fig. 5. A representation of the proposed to find k-complexes in the EEG data.
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4.1.2. Tunable Q-factor wavelet transform (TQWT)
In this study, TQWT was employed to identify the

characteristics of EEG signals. The TQWT often
depends on various factors affecting the conclusions
[8,29,30]. TQWT, which is reported by Selesnick
(2011), is a transform of discrete wavelet (DWT) that
is adaptable. The TQWT uses a bank of 2-channel
filters, similar to the DWT, that contains a low-pass
with parameter a and a high-pass filter with
parameter, employing programmable Q-factors, to
separate the signal of EEG into sustained compo-
nents. The low-pass filter's sustained component
output is taken into consideration as signal input for
the following 2-channel filter bank for additional
analysis. The signals output are the drifting com-
ponents of the filter of high-pass for each output
layer. Fig. 6 shows a straightforward instance of a
transformation wavelet with a J level. TQWT is
covered in greater detail in [14,31e33]. These con-
ditions are:

1. Q-factor: The band-pass filter's width is deter-
mined by this parameter. The TQWT reaction
enables flexibility by managing and modifying
this wavelet transform value. The sustained
components extraction is more efficient the
higher the Q-factor. In the meantime, the reacted
waveform on the basis of a lower Q-factor is
useful to gain the drifting component's
properties.

2. Number of decomposition levels (J ): Input sig-
nals are divided into sub-bands of Jþ1 if J is the
filter band number. J sub-bands for each of these
bands were obtained through their highpass
filters, and one came from the final level filter
band's low-pass filter. The time domain wave-
form widens and the characteristics sharply in-
crease as the decomposition level is raised.

3. Sampling rate or redundancy (R).

4. R and Q can be computed based on low pass
scaling and high pass scaling factors (b and s).

R¼ b

s� 1
ð4Þ

Q¼b� 2
b

ð5Þ

5. TQWT was used to divide EEG signals into
many levels or sub-bands (SBs) applying the
parameters of input (Q, R, and J ). A sampling
frequency and a (L_PS) low pass sub-band and
(H_PS) high pass sub-band sfs and bfs, respec-
tively, as shown in Fig. 7.

6. A filter of low pass h1 (u scaling s is applied to
make the L_PS, and the H_PS is made from a
filter of high pass h0 (u) with scaling b. Then,
H_PS is decayed into L_PS and H_PS as higher
and lower sub-bands at jth level, respectively.
Equations (6) and (7) can be used to mathemat-
ically express them. The low-pass filter's sus-
tained component output is taken into
consideration as the signal input for the
following 2-channel filter bank for further anal-
ysis. The output signals are the drifting groups
that the filter of high-pass for every layer out-
puts. Fig. 5 shows a straightforward instance of a
transformation wavelet with J level.

Low pass filter h0ðuÞ

¼

8>>>>><
>>>>>:

1; if juj � ð1� bÞp;

W
uþ ðb� 1Þp
sþ b� 1

; if ð1� bÞp< juj<ap;

0; if sp� juj � p

ð6Þ

High pass filter h1ðuÞ

¼

8>>>>><
>>>>>:

1; if juj � ð1� bÞp;

W

�
ap�u

sþ b� 1

�
; if ð1� bÞp< juj<ap;

0; if sp� juj � p

ð7Þ
7. The mathematical formula for the frequency that

corresponds with low and high pass filters in
TQWT can be gained mathematically.

In this work, the Q-value was fixed at 6 after
extensive testing, and it was discovered that SB3
offered the needed properties for locating the EEG
k-complexes. Finally, various parts of characteristicsFig. 6. One example of wavelet transformation with Q-factor and J level.

570 W. Al-Salman et al. / Karbala International Journal of Modern Science 10 (2024) 564e581



entropy, mean energy, maximum, Hurst exponent
(H), minimum, median, mode, mean, range, first
quartile, skewness, variation, second quartile, stan-
dard deviation, shape factor, kurtosis, crest factor,
Zero-crossing rate, margin factor, impulse factor,
short energy, and time centroid were taken out from
SB3 for every segment and then combined with
others fractal dimension and frequency features
peak frequency, mean frequency, mean power,
median frequency which are taken out using Katz's
approach and power spectrum density, respectively.
The PSD was defined as:

PðuÞ¼
XN¼1

n¼0

xðnÞe�j2pN unu¼ 0;1;2; : : : N� 1 ð8Þ

Where u is the frequency of normalization
angular and n refers to the time index. The peak
frequency, median frequency, mean power, and
mean frequency were derived from PSD as the most
significant distinctive aspects. To identify k-com-
plexes, those traits are combined with other fea-
tures. As was already noted, one crucial step to
lessen algorithm complexity and boost performance
is to lower the size of EEG data. All of the collected
features were further examined using P-value and
then significant sections of characteristics were
employed as input to the classifier LS-SVM to
identify (non) k-complex segments, see Table 1. The
proposed characteristics P-value, which were
calculated from sub-bands of TQWT, demonstrate
how k-complex features differ from non-k-complex
features. The test is run with a 96% level of confi-
dence. According to Table 1's results, the qualities
that are bolded are significant ( p � 0.05), as shown
in Fig. 8, and a deviation is only considered signif-
icant in statistics p � 0.05. The findings demonstrate
that distinct sets of features performed much better
than other characteristics in classifying k-complexes.

These findings lead us to the conclusion that not all
of the features had successful k-complex detection
capabilities. Therefore, in order to enhance k-com-
plex detection performance and shorten processing
time, some of these features must be chosen. Table 2
shows the parameters of the classifiers utilized in
the proposed research experiments.

4.2. Statistical analysis

The functioning of our method was assessed uti-
lizing a variety of statistical analyzes, including ROC
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Fig. 7. EEG signal decomposes using TQWT into low pass subband and high pass subband at jth levels.

Table 1. P-Value of the proposed features based on ANOVA f-test.

No. Features $F$-ratio $P$-value Result

1 Maximum 26.6978958 0.4033e-06 S
2 Range 42.53727 1.136e-08 S
3 Standard deviation 13.94123 0.000396 S
4 Minimum 26.92904 2.19263e-06 S
5 Mean 1.39979 0.241482 NS
6 Short energy 10.22504 2.54e-16 S
7 Zero-crossing rate 8.52190 0.52e-10 S
8 Time centroid 11.03799 1.36e-08 S
9 Impulse factor 24.36407 0.016979 S
10 Margin factor 14.21629 9.47e-13 S
11 Shape factor 9.68142 0.001373 S
12 Crest factor 5.20659 0.683969 NS
13 Mean energy 9.56247 2.27e-18 S
14 Entropy 8.89128 0.0009451 S
15 Hurst exponent 6.51018 6.49e-34 S
16 Mode 0.00256 0.959829 NS
17 Median 0.01223 0.912279 NS
18 First quartile 0.03899 0.844079 NS
19 Fractal feature 6.49223 0.000803 S
20 Second quartile 1.83682 0.179944 NS
21 Variation 8.41826 0.005043 S
22 Skewness 2.15407 0.134247 NS
23 Kurtosis 19.8159 0.97e-4539 S
24 Mean frequency 9.96944 0.0024 S
25 Median frequency 2.89938 0.093319 NS
26 Peak frequency 13.24693 0.000537 S
27 Mean power 0.00034 0.985259 NS
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(for additional information on the measures),
sensitivity, cross-valuation, accuracy, and specificity,
see [3,4,34]).

1. k-cross validation: It is used in this study to
gauge and evaluate the categorization quality. It
is divided into k-fold equal-size subgroups of a
dataset. K represents the total amount of the
inputs. Every fold of input is applied to the test,
but others are used as training inputs and for
testing (validation). This process is carried out n
times.

Performance¼1
k
¼
Xk

1

Accuracyk ð9Þ

2. Sensitivity: It is a metric applied to quantita-
tively evaluate the classification effectiveness of
findings utilizing the positive decision's actual
number or cases.

Sensitivity¼TP=ðTPþFNÞ ð10Þ

3. Specificity: It is utilized to calculate the negative
case rate by applying the decision number of
true negative/negative cases number.

Specificity¼TN

ðTPþFPÞ ð11Þ

4. Accuracy: It is used to calculate the total number
of accurate forecasts. It is used to evaluate a
classifier's performance and accuracy. It specifies
the proportion of true classified I stances to the
final number of cases.

Accuracy¼ðTNþTPÞ ¼ ðTNþFNþFPþTPÞ ð12Þ

Where TP represents correctly detecting k-
complexes in EEG signal, FN represents incorrectly
identifying k-complexes, TN represents true nega-
tive detection number and FP represents true posi-
tive detection number.

4.3. Classification algorithms

The supervised learning method of machine
learning has been used to categorize binary data
using LS-SVM. The primary goal of utilizing the LS-
SVM is to identify the optimal dataset for training;
after that, the dataset is examined to test and vali-
date it using the provided approach. In our prior
studies and others, more information about classi-
fiers and LS-SVM applied here are illustrated in

Fig. 8. The features ranking by using F-value; the high F-values (F-ratio> 2.9) refer to more efficient features.

Table 2. The parameters of the classifiers used in the experiments in this research.

Classifiers Parameters and values

LS-SVM The RBF kernel is used in this study. (γ ¼ 1, s2 ¼ 10),
k-means k, ci and xk, where k is the number of clusters, k ¼ 2, while ci is the centre of clusters and ci ¼ 1,

and xk is the data points
Naïve bayes Class nodes are represented by the EEG k-complexes, whilst the feature nodes stand for the frequency,

statistic, and non-linear data.
ANN The value of a is set to 1. The number of iterations is set to 1000, the target error is set to 10e�5.

The learning rate is set to 0 and activation function of y (x) ¼ 1/(1 þ e� ax).
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[3,25,29,30,35]. Here, EEG signals k-complexes have
been characterized using a support vector machine
classifier. Classifiers of LS-SVM are the center of
several analysts and attention, according to
numerous academics. The SL-SMV classifiers, for
example, have been proposed by Boser, Guyon, and
Vapnik (1992). In order to create a high dimension
from the original main data, non-linear mapping
was used, and the spearing of the linear optimal
hyperplan was investigated after. Several re-
searchers utilized it to categorize EEG signal data,
such as the sleep stage and epileptic seizures. The
LS-SVM machine has been utilized in this work as
the better classifier to separate between the two non
and k-complexes segments and to contrast their
results with other classifiers. In this work, Matlab
2020 is utilized to study the LS-SVM. In order to
verify the proposed method, the obtained results
were compared with several classifiers (naïve Bayes,
artificial neural networks).

5. Experimental results

In this study, a number of experiments were used
to assess the effectiveness and functioning of our
strategy. In Section 2, the datasets used in this study
were described. The k-complexes have been recog-
nized in the EEG data using a variety of character-
istics. Using the sliding window approach, EEG
signals were divided into small parts. The window
was changed to 0.5 s with 0.4 s of overlap. The entire
EEG 0.5 s signal was broken down into 27 main
components. These characteristics were taken away
while applying the Katz algorithm and the Tunable
Q-factor wavelet transform. They were first

scrutinized before being used as input for the
square of the vector machine's classifier support to
characterize the discovered biosignal waveforms
during the second stage of sleep. The primary intent
of choosing a different set of characteristics was to
assess how well the characteristics could describe k-
complexes. More information on the examination of
the features will be provided in the following
section.
The studies' findings were put to use in Matlab

2020, which required a machine with an Intel ® core
i7 (TVM), 3.40 GH processor, and 8.00 GB of RAM.
According to the research, selecting the optimum
feature set is crucial for categorizing EEG problems.
The results showed that our suggested method's
classification results are improved by precise feature
selection. Our research showed that the ability of
the excerpted-different feature set to characterize k-
complexes was tested. We discovered the traits
during the investigation that demonstrated their
capacity to recognize the crucial sleep stage 2
characteristics. An illustration of a box plot of some
features is shown in Fig. 9. The (non) k-complexes
FDs are shown in Fig. 9 (a). The fractal dimension
values ranged between 1.0 and 2.0. We see that the
characteristics of FD could be used to describe all of
the (non) k-complexes.
The non-linear characteristics were also used in

this work because the EEG signals are inherently
non-stationary and nonlinear, making classification
challenging. 22 characteristics, namely variation,
maximum, Hurst exponent, minimum, mean en-
ergy, mode, entropy, kurtosis, mean, range, first
quartile, and standard deviation, skewness, median,
second quartile, time centroid. Shape factor, margin

Fig. 9. A fractal dimension feature and a Hurst exponent (H) features for identifying k-complexes in EEG signals.
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factor, Zero-crossing rate, crest factor, short energy,
and impulse factor. In order to distinguish EEG k-
complexes, these features were merged with fractal
and frequency features that were retrieved using
Katz's technique and PSD. Our results demonstrate
that, when compared to other sub-bands, sub-band
3 (SB3) produced great outcomes during the training
phase. The Hurst exponent, for instance, was a sig-
nificant non-linear property taken from the TQWT.
It performed exceptionally well at classifying every
k-complex present in the EEG recordings. An
instance of (non) k-complexes plot box of the Hurst
exponent is shown in Fig. 9 (b).
The Hurst exponent (H) has values between 0 and

1, where H0.5 denotes a negative correlation be-
tween persistent natural series or increments and
H > 1 denotes a positive correlation between anti-
persistent time series. But as shown in Fig. 9 (b),
among all non-complexes and k-complexes, the
Hurst exponent features provided values with the
strongest correlation between 0.5 and 1, and this
feature was able to recognize the frequent biosignal
waveform in sleep stages 2. The capacity of the
nonlinear features to identify k-complexes in the
EEG data was proved by the H feature, which is a
measurement of long-range dependency within a
signal. In this study, mean energy and another
example, entropy characteristic, were also used. The
fact that mean energy was employed to measure a
range of activities suggests that different phases of
sleep should be investigated. Entropy characteristics
are also among the most crucial non-linear features
that enable the recognition of regularities in

complex waveforms, such as k-complexes. The re-
sults imply that the k-complexes in the EEG data
may be described by mean energy and entropy
characteristics, as shown in Fig. 10. Skewness and
kurtosis were employed as features in this study.
Because some EEG waveforms, such as k-com-
plexes, have skewed distributions while others have
symmetrical distributions, it is imperative to exploit
such features. For skewed distributions, these
properties were presented as relevant metrics. Our
results demonstrate that, as compared to segments
that do not contain k-complexes, the kurtosis char-
acteristics represent a potential to distinguish the k-
complexes, while the skewness feature exhibited a
negative reflection to do so. As a result, while the
skewness feature is not used in this work, it can be
employed to distinguish EGG k-complexes. Fig. 11
illustrates kurtosis and skewness box plots of (non)
k-complexes.
The selection of feature technique can choose

prominent features while reducing the number of
features extracted. This phase is important because
it can reduce the number of features our suggested
technique must calculate before it can be sent to
classifiers. In order to evaluate the features that
were extracted and lower the database dimension-
ality by separating out the crucial features from the
unimportant ones, testing computational hypothe-
ses can be a statistically viable strategy.
One of the effective feature selection strategies

used in this study to find the relevant features is the
one-way analysis of variance of computational hy-
pothesis testing, which is shown in Table 1. Testing

Fig. 10. Mean energy and entropy features to discover k-complexes and non k-complexes in signals of EEG.
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of Computational hypothesis is applied to assess 27
feature sets, variation, maximum, Hurst exponent,
minimum, mean energy, mode, entropy, kurtosis,
mean, range, first quartile, and standard deviation,
skewness, median, second quartile, time centroid.
Shape factor, margin factor, zero-crossing rate, crest
factor, short energy, and impulse factor were
therefore crucial and were chosen to display EEG
signals because they received a less than (p < ¼ 0.05)
P-value. However, because they are not necessary
for characterizing the (P <¼ 0.05) k-complexes, the
characteristics of “crest factor, first quartile, second
quartile, skewness, mean, median, median fre-
quency, mode, and mean power” are not chosen.
They were therefore used to describe k-complexes.
Finally, this research used 18 features to charac-
terize k-complexes.
Our suggested method's experimental findings

are shown. Using a cross-validation approach with
6-fold in the test set, all subject findings were
recorded on their specificity accuracy, and sensi-
tivity. In this study, the schema was also evaluated
using the Kappa coefficient. For categorical portions,
the agreement of the inter-rater metric is more
important than the agreement of percent. This is so
that Kappa can take into account coincident

agreements. The eighteen features were applied to
each of the tests in this part in order to determine
their functionality. The classification of the sug-
gested algorithm's findings is illustrated in Table 3.
The average SVM accuracy, specificity, sensitivity,
and kappa coefficient were, respectively, 98.3%,
96.4%, 91.6%, 0.92%, and 0.93%, according to the
experiment's results in Table 3. These findings have
been compared to the experts' (expert1) scoring in
order to determine if our suggested approach and
the experts' scoring are both accurate.

5.1. Comparing our proposed with other classifiers

We evaluate our method's performance by con-
trasting it with other approaches. Two comparisons
will be shown here. Our method performance was
first contrasted to that of naïve Bayes, artificial
neural networks, and k-means, these three widely
used classification methods. The findings of our
method were compared to others using a similar
database in the second contrast. The identical fea-
tures vector was simultaneously used as an input to
naive Bayes, LS-SVM, ANN classifiers, and k-means
for the purpose of comparison with other classifiers.
Table 4 provides an illustration of the obtained

Table 3. Proposed method findings of k-complexes detection.

Fold No. Accuracy% Sensitivity% Specificity% J- statistic% Kappa Coefficient%

Fold 1 98.8 96.8 91.6 0.92 0.92
Fold 2 97.9 96 92.9 0.93 0.93
Fold 3 99 97 93.9 0.95 0.97
Fold 4 98.5 95.8 90.9 0.91 0.91
Fold 5 97 95.8 88.3 0.89 0.93
Fold 6 97 95.8 88.3 0.89 0.93
Average 98.3 96.5 91.6 0.92 0.93

Fig. 11. Skewness and Kurtosis features to identify k-complexes and non k-complexes in signals of EEG.
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results. The effectiveness of our approach out-
performed that of ANN, k-means, and naive Bayes.
The specificity, sensitivity, and accuracy of the 6-
Fold LS-SVM classifier under cross-validation were
98.3 ± 0.47, 96.5 ± 0.64, and 91.6 ± 0.75, respectively.
The k-means classifier was used to account for the
second-highest result, and ANN produced the
lowest result.

5.2. Method performance evaluation by using
characteristics of receiver operating (ROCs)

The ROC curve was used to measure the effec-
tiveness of our strategy by applying it to several
sets of characteristics. Fig. 12 (a and b) were utilized
to demonstrate the ROC includes curve area to our
technique utilizing the EEG rather than measuring
the computation time required to mimic the clas-
sifier of the SVM. Fig. 12 (a) shows our method
without feature selection, whereas Fig. 12 (b) shows
the effectiveness of our method with feature se-
lection. The greatest observed value of the area
under the curve was 0.96 when features were
selected, see Fig. 12 (b), and it was roughly 0.78
when features were not selected, see Fig. 12 (a). The
outcomes demonstrated the method's growing
capability for identifying (non) k-complex seg-
ments. When the features were analyzed before
being assigned to the classifier, it produced excel-
lent results.

5.3. Evaluation of the performance of the proposed
model using the Taylor diagram

The Taylor diagram was used to compute the in-
verse cosine angle to the correlation coefficient, and
the performance of the proposed technique employ-
ing the LS-SVM classifier was compared to that of
other classifiers. Fig. 13 illustrates the comparison of
three classifiers utilizing the Taylor diagram. In this
work, we employed correlation coefficient and stan-
dard deviation to improve the closest fit classifier's
capacity to identify k-complexes in EEG data.
Fig. 13 shows the results of LS-SVM classifier

outperformed other classifiers in terms of gener-
ating the highest correlation coefficient value and
producing a forecast that was the most accurate with
respect to the original data. The gap between the
observed and dataset predicted in the datasets
testing was therefore cut in half by employing the
classifier of LS-SVM with the features of multi-
domain. Standard deviations and the greatest cor-
relation coefficient were both 0.90 percent. The
extreme learning machine classifier, however, pro-
duced the 2nd best outcomes, see Fig. 13. The base
results, see Fig. 13, were also attained using an ANN
classifier. The classifier of LS-SVM presented an
overall improved performance when employed with
our technique to differentiate k-complexes,
including stronger correlation coefficients and a
smaller deviation (Fig. 13). Finally, this strategy may
offer a practical and accurate way to identify k-
complexes, which will aid sleep specialists in
correctly diagnosing and treating sleep disorders.

5.4. Comparison of our proposed performance
employing various features

The efficiency of the recommended technique is
assessed by a number of experiments, and the

Fig. 12. a and b performance of our method utilizing ROC curve (b) and without selection of features (a).

Table 4. Proposed method results to find k-complexes (average of clas-
sification results based on mean ± standard) with using 6-fold cross-
validation.

Classifier Types Accuracy Sensitivity Specificity

Naive bayes 82.1 ± 1.70 85.6 ± 1.23 81.8 ± 1.50
ANN 85.5 ± 1.46 82 ± 1.72 79.4 ± 1.64
$k$-means 92.7 ± 1.92 91 ± 1.66 83.2 ± 1.75
LS-SVM 98.3 ± 0.47 96.5 ± 0.64 91.6 ± 0.75
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results are contrasted utilizing a variety of feature
types. A specific set of features was applied and
utilized with the same methods as in Section 3. The
behaviors of these features were examined in order
to distinguish the k-complexes using a variety of
criteria, including fractal, statistics, nonlinear, fre-
quency, and feature components, see Table 5. It was
seen that every k-complex is grouped according to a
particular characteristics set. In order to determine
which features are best able to accurately recognize
k-complexes, the characteristics were taken out from
each 0.5 s EEG data and then sent singularly to the
classifier of LS-SVM. The classification outcomes of
the suggested strategy employing various feature

types are displayed in Table 5. This table illustrates
the accuracy of the LS-SVM classifiers for the sta-
tistic, frequency, fractal, nonlinear, and combination
of features was 52.3%, 56.2%, 52.4%, 56%, and 98.3%,
respectively. These findings showed that a combi-
nation of feature sets boosted the suggested
method's classification accuracy rate by 43%.
The effectiveness of the suggested method

employing a mixture of features was also assessed
in comparison with several sets of features,
including statistics, fractals, frequencies, nonlinear
features, and a combination of features using the
ROC curve. A useful statistic for examining the
relationship between sensitivity and specificity is
the ROC curve. The outcomes are displayed in
Fig. 14. The outcomes in Fig. 14 (a)_(e) demonstrate
how precisely k-complexes can be represented in
EEG by features. Fig. 14 confirms what we discov-
ered in Section 7.1. For the combination of char-
acteristics (multi-domain features), the highest area
undervalue of ROC (AUC) was 0.98, whereas the
lowest value was 0.51 for features. As a result, it
was seen feature combination performance is su-
perior to that of the individual characteristics. As a

Table 5. The proposed approach outcomes utilizing various features.

Feature Range of validation
metrics (6-fold)

Average

Statistic features 52%e54% 52.3%
Frequency features 55.1%e57% 56.2%
Fractal features 51%e53.4% 52.4%
Nonlinear features 53%e58.1% 56%
Combination of features 97%e98.8% 98.3%

Fig. 13. Taylor diagram on the correlation coefficient used to contrast our method performance and other classifiers.
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result, we consider feature combinations in the
remaining sections of the study. Finally, the results
of the experiments show that our method can
identify EEG k-complexes data using a combina-
tion of features.

5.5. Our suggested method performance when
compared to others

Because the EEG data used to determine sleep
features in earlier studies varied, it was difficult to
evaluate different automatic k-complex recognition
algorithms. The gained results utilizing the same
data must be contrasted in order to be meaningfully
compared. In Table 6, the findings from the method
categorization were highlighted in bold type. Table 6
provides performance data for a few existing ap-
proaches that make use of the same database that we
used in our investigation. The outcomes shown in
Table 6 show that our method's sensitivity is higher
than that of all recently produced approaches. For
purposes of comparison, several findings from

earlier studies that did not use the same database are
also included.
Devuyst et al. [9] suggested a novel method for

characterizing k-complexes in the EEG data by

Fig. 14. The ROC curve based on features using LS-SVM classifier: (a) statistical; (b) fractal; (c) frequency, (d) nonlinear and (e) a combination of features.

Table 6. Existing methods performance comparison with our proposed
method.

Used Method Detection
Result

Features extraction using fuzzy thresholds [9] 60.94%
Electrical system of threshold and filtering

method [8]
68.0%

Wavelet transformation method [34] 74.0%
Tunable-Q wavelet transform [31] 84.67%
Teager energy operator andWT technique [15] 85.3%
Hjorth parameters and fuzzy decision [37] 86.0%
Artificial neural network based on 14 features

[16]
90.0%

$k$-complex detection's automated methods
and signal template [38]

91.2%

Multi-domain feature extraction and selection
coupled [4]

92.41%

Using $k$-complexes with ReCNN and deep
transfer learning [39]

92.75%

Proposed method 98.3%
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applying probability thresholds. In their investiga-
tion, they employed a window size and a fuzzy
threshold to detect k-complexes. This strategy only
produced a rate of sensitivity of 60.94. The suggested
approach, in contrast, obtained a 0.5 window size
and a sensitivity greater than 96.3%. 74% sensitivity
was reported by Krohne et al. [36] for the identifi-
cation of k-complexes. They used four features to
present their wavelet transformation results. When
compared to Krohne et al. [36], our technique pro-
duced excellent results. Fuzzy decision-making and
Hjorth's parameters were utilized in Migotina et al.
[37] to characterize k-complexes. The study's re-
ported average sensitivity score of 86% is 11% lower
than the approach we suggested in this paper.
Bankman et al. [16] focused on using an artificial

neural network classifier to categorize the sleep
stage 2 aspects in the EEG signals using 14 features.
90% was the average sensitivity result reported. The
sensitivity analysis results fell short of those of our
method as well. The k-complexes can be described
using a method proposed by Erdamar et al. [15].
The researchers were able to attain 85.3% sensitivity
for the wavelet transform operator when it was
coupled with teager energy. Our approach fared
better than the ones suggested by Erdamar et al.
[15]. G. Bremer et al. [8] published the findings of
their feature extraction method for k-complex
detection. The electrical system, which used
threshold and filtering techniques, was used to
extract characteristics from the EEG data before
providing the characteristics to the classifier to
characterize k-complexes. The average sensitivity
rate was 68%. In contrast to Bremer et al. [8]'s
findings, our strategy produced better outcomes.
Table 6 shows that our method is a dependable and
practical way to find k-complexes.
The suggested approach was further assessed by

contrasting it with other research that made use of
other datasets. Dorokhov et al. [40] proposed a new
method to compare k-complexes based on Time-
frequency analysis using continuous wavelet trans-
form. In this study, several brain waves for each of
the classical frequency ranges were shown using the
wavelet spectral power. The P-value was used to
assess each retrieved feature. They reported that
there are big differences between k-complexes of II
type in low-frequency bands. Another study was
presented by Li and Dong [4], in which multi-
domain feature extraction and selection coupled
with the RUSBoosted tree model were utilized to
detect k-complexes. In their work, tunable Q-factor
wavelet transform was employed to decompose
each EEG segment. An average classification accu-
racy of 92.41% was recorded. Khasawneh et al. [39]

suggested a method to identify k-complexes utiliz-
ing faster ReCNN and deep transfer learning. The
rate of average accuracy was 92.75%. According to
the results in Table 6, our proposed method recor-
ded higher results than those existing approaches.
Our approach may be utilized as a solid and trust-
worthy method for the finding of k-complexes based
on Table 6.

6. Limitations of proposed solution

The suggested method's ability to extract hybrid
features effective features from the EEG signal,
which is then utilized to recognize waveforms from
EEG data, is one of its primary benefits. This
method may be applied as an automated platform to
assist professionals in identifying anomalies in EEG
recordings and aid in their clinical decisions.
Furthermore, the suggested technique presents an
additional benefit in that it tackles a highly chal-
lenging problem: the categorization of EEG signals
from the Dream dataset. This difficulty may be
resolved by the suggested approach, which for 6-
fold cross-validation of the classification yields a
classification accuracy rate of 98.3 ± 0.47%.
Furthermore, a vast quantity of EEG data may be
reduced to a small collection of features that serve as
the most representative data points using the sug-
gested feature extraction approach. Furthermore, an
additional benefit of the suggested approach, which
is predicated on the categorization of EEG signals in
waveforms from the Dream dataset, is an extremely
challenging task. The suggested technique resolves
this issue by achieving a 6-fold cross-validation
classification accuracy rate of 98.3 ± 0.47%.
Furthermore, a large quantity of EEG data may be
reduced to a small collection of features that serve as
the best representative data points using the sug-
gested feature extraction approach. Because of its
efficient data reduction, this study can handle large
EEG datasets at a lower processing cost than pre-
vious approaches.
However, the suggested approach has several

drawbacks. As can be shown from the experimental
findings in Tables 4 and 5, the approach performs
very well when applied to an LS-SVM classifier,
mediumlywell when used to aNaïve Bayes classifier,
and poorly when applied to an ANN classifier due to
its inflexibility. The fact that the suggested solution
requires a lot of computing power and that we only
employed a tiny database are other drawbacks.
Furthermore, the suggested method's performance
did not yield good outcomes for distinct aspects like
statistics and frequency features. In the future, we
also want to use real databases to recognize
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waveforms from EEG signals and evaluate our
approach withmore than two databases. Two further
drawbacks of the suggested approach are its high
processing cost and the tiny database we employed.
Furthermore, specific characteristics like statistics,
non-linearity, and frequency features did not yield
good performance outcomes from the suggested
strategy. Furthermore, we want to employ real da-
tabases in the future to evaluate our method's ability
to recognize waveforms from EEG signals, as well as
several databases.

7. Conclusion

We pointed out here a potentially innovative
approach to identify k-complexes in EEG data. This
approach uses an LS-SVM classifier together with a
range of feature sets. Each EEG segment lasted 0.5 s
and included an extract of 27 sets of features. We
then examined those characteristics before
providing them to the classifier. Computational
hypothesis testing was used to identify the resilient
qualities and strong features in order to identify the
EEG k-complexes. The EEG signals are inherently
non-stationary and nonlinear, making classification
challenging, non-linear characteristics, fractal
dimension, and frequency features were used in this
work to achieve a high level of accuracy rate as well
as to make the detection phase of waveforms easy.
18 features out of 27 were selected based on the
ANOVA F-test, as shown in Fig. 5 and Table 1. They
were employed as the classifier input for LS-SVM in
order to describe EEG k-complexes. Our experi-
ment's results demonstrated that the collection of 18
characteristics yielded better results, with average
specificity, sensitivity, and accuracy values of 91.6%,
98.3%, and 96.5%. In order to check our method's
efficiency, we compared it to other techniques and
classifiers to assess its potential for describing k-
complexes. We saw that our technique produced
high classification results when compared to other
classifier methods. Therefore, the proposed schema
could be able to help healthcare providers correctly
identify and treat sleep problems. Our method
works with a wide range of medical data. It can be
applied in the future to emphasize different char-
acteristics of the sleep state, such as slow and vertex
waves.
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